Showing posts with label Maggie Sanders. Show all posts
Showing posts with label Maggie Sanders. Show all posts

Wednesday, May 11, 2016

Marvin Minsky of MIT - Co-creator of Artificial Intelligence - died this year

.

What do Albert Einstein, Isaac Asimov, Carl Sagan, Arthur C. Clark, and Stanley Kubrick have in common?  Sure they are the greatest scientific minds of the 20th century, except Kubrick.  But then he popularized modern science in the movies when he produced and released the revolutionary 2001 A Space Odyssey movie written by Clarke in 1968.

All were friends and associates of Marvin Minsky, the founder of The Media Lab and Artificial Intelligence from MIT.

I interviewed Minsky several times in 1986 and then became part of his Society of the Mind and attended his events including the time he had Arthur C. Clarke as guest.  To hear Minsky talk about the old days with his friends, all beyond genius in my book, was fascinating.

Thanks to a very dear friend of mine, Margaret Sanders, the daughter of Colonel Sanders of Kentucky Fried Chicken fame, I was able to get to know Marvin and his wife Gloria and have dinner at their house where he told endless stories of their early escapades.

Kubrick and Clarke

Marvin and friends enjoyed a slightly different lifestyle than most of us.  While I was playing sandlot baseball they were rewiring houses, inventing automatic lighting systems, and figuring out how to change the image of science fiction in the movies.  That was the reason Kubrick came to Minsky to solve the technical problems when making 2001 A Space Odyssey.

Sometimes the greatest accomplishments in life are the result of the most unusual sequence of events.  I was researching a story on Plato's book on the Lost Continent of Atlantis when I stumbled across information that Maggie Sanders, the oldest daughter of the Colonel and one who inspired him to originate the take out concept of fast food marketing, was connected to Atlantis.

She had financed expeditions to find evidence of the Lost World of Atlantis, and had discovered the massive roads and buildings in the ocean by Bimini.  I was in NYC at the time but much of my family was in Kentucky and my mother had just appeared as an extra in a movie and met Maggie Sanders.


I arranged to meet her and discovered she was deeply involve in the American Academy of Science and had met Einstein through her work with the Academy.  We became great friends and I would travel with her all over the country and learned of her amazing relationship with all these prominent scientists.

Maggie knew more Nobel prize winners than anyone I ever met and would suddenly hand me a phone when we were travelling to some event so I could interview one of them.  Two of her oldest friends were Marvin and his wife Gloria so of course when she found out I wanted to do stories about the Media Lab at MIT she arranged for us to go there and meet with Minsky.

From then on we attended the Society of the Mind gatherings.

Well here are the obituaries of Marvin Minsky.  My contribution to them might be that I found him to have a great sense of humor, he loved the camaraderie of his close friends, he enjoyed practical jokes, and he was living proof of the motto over the entrance to The MIT Media Lab, "We invent the future."

Marvin is now back with his gang of friends, Albert Einstein, Isaac Asimov, Carl Sagan, Arthur C. Clark, and Stanley Kubrick, and he has achieved the immortality he always expected to find.


MIT Media Lab News

Marvin Minsky, “father of artificial intelligence,” dies at 88

 

Professor emeritus was a co-founder of CSAIL and a founding member of the Media Lab.

MIT Media Lab 
January 25, 2016

Marvin Minsky, a mathematician, computer scientist, and pioneer in the field of artificial intelligence, died at Boston’s Brigham and Women’s Hospital on Sunday, Jan. 24, of a cerebral hemorrhage. He was 88.

Minsky, a professor emeritus at the MIT Media Lab, was a pioneering thinker and the foremost expert on the theory of artificial intelligence. His 1985 book “The Society of Mind” is considered a seminal exploration of intellectual structure and function, advancing understanding of the diversity of mechanisms interacting in intelligence and thought. Minsky’s last book, “The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the

Future of the Human Mind,” was published in 2006.

Minsky viewed the brain as a machine whose functioning can be studied and replicated in a computer — which would teach us, in turn, to better understand the human brain and higher-level mental functions: How might we endow machines with common sense — the knowledge humans acquire every day through experience? How, for example, do we teach a sophisticated computer that to drag an object on a string, you need to pull, not push — a concept easily mastered by a two-year-old child?

"Very few people produce seminal work in more than one field; Marvin Minksy was that caliber of genius," MIT President L. Rafael Reif says. "Subtract his contributions from MIT alone and the intellectual landscape would be unrecognizable: without CSAIL, without the Media Lab, without the study of artificial intelligence and without generations of his extraordinarily creative students and protégés. His curiosity was ravenous. His creativity was beyond measuring. We can only be grateful that he made his intellectual home at MIT.”

A native New Yorker, Minsky was born on Aug. 9, 1927, and entered Harvard University after returning from service in the U.S. Navy during World War II. After graduating from Harvard with honors in 1950, he attended Princeton University, receiving his PhD in mathematics in 1954. In 1951, his first year at Princeton, he built the first neural network simulator.


Minsky joined the faculty of MIT’s Department of Electrical Engineering and Computer Science in 1958, and co-founded the Artificial Intelligence Laboratory (now the Computer Science and Artificial Intelligence Laboratory) the following year. At the AI Lab, he aimed to explore how to endow machines with human-like perception and intelligence. He created robotic hands that can manipulate objects, developed new programming frameworks, and wrote extensively about philosophical issues in artificial intelligence.

“Marvin Minsky helped create the vision of artificial intelligence as we know it today,” says CSAIL Director Daniela Rus, the Andrew and Erna Viterbi Professor in MIT’s Department of Electrical Engineering and Computer Science. “The challenges he defined are still driving our quest for intelligent machines and inspiring researchers to push the boundaries in computer science.”

Minsky was convinced that humans will one day develop machines that rival our own intelligence. But frustrated by a shortage of both researchers and funding in recent years, he cautioned, “How long this takes will depend on how many people we have working on the right problems.”

In 1985, Minsky became a founding member of the MIT Media Lab, where he was named the Toshiba Professor of Media Arts and Sciences, and where he continued to teach and mentor until recently.

Professor Nicholas Negroponte, co-founder and chairman emeritus of the Media Lab, says: “Marvin talked in riddles that made perfect sense, were always profound and often so funny that you would find yourself laughing days later. His genius was so self-evident that it defined ‘awesome.’ The Lab bathed in his reflected light.”

In addition to his renown in artificial intelligence, Minsky was a gifted pianist — one of only a handful of people in the world who could improvise fugues, the polyphonic counterpoint that distinguish Western classical music. His influential 1981 paper “Music, Mind and Meaning” illuminated the connections between music, psychology, and the mind.

Other achievements include Minsky’s role as the inventor of the earliest confocal scanning microscope. He was also involved in the inventions of the first “turtle,” or cursor, for the LOGO programming language, with Seymour Papert, and the “Muse” synthesizer for musical variations, with Ed Fredkin.
Minsky received the world’s top honors for his pioneering work and mentoring role in the field of artificial intelligence, including the A.M. Turing Award — the highest honor in computer science — in 1969.


In addition to the Turing Award, Minsky received honors over the years including the Japan Prize; the Royal Society of Medicine’s Rank Prize (for Optoelectronics); the Optical Society of America’s R.W. Wood Prize; MIT’s James R. Killian Jr. Faculty Achievement Award; the Computer Pioneer Award from IEEE Computer Society; the Benjamin Franklin Medal; and, in 2014, the Dan David Foundation Prize for the Future of Time Dimension titled “Artificial Intelligence: The Digital Mind,” and the BBVA Group’s BBVA Foundation Frontiers of Knowledge Lifetime Achievement Award.

Minsky is survived by his wife, Gloria Rudisch Minsky, MD, and three children: Henry, Juliana, and Margaret Minsky. The family requests that memorial contributions be directed to the Marvin Minsky Foundation, which supports research in artificial intelligence, including support for graduate students.

A celebration of Minsky’s life will be held at the MIT Media Lab later this year.



The Washington Post

“The world has lost one of its greatest minds in science.” R.I.P. Marvin Minsky

January 26

Marvin Minsky, a legendary cognitive scientist who pioneered the field of artificial intelligence, died Sunday at the age of 88. His death was announced by Nicholas Negroponte, founder of the MIT Media Lab, who distributed an email to his colleagues:

With great great sadness, I have to report that Marvin Minsky died last night. The world has lost one of its greatest minds in science. As a founding faculty member of the Media Lab he brought equal measures of humour and deep thinking, always seeing the world differently. He taught us that the difficult is often easy, but the easy can be really hard.

In 1956, when the very idea of a computer was only a couple of decades old, Minsky attended a symposium at Dartmouth that is considered the founding event in the field of artificial intelligence. His 1960 paper, "Steps Toward Artificial Intelligence," laid out many of the routes that researchers would take in the decades to come. He founded the Artificial Intelligence lab at MIT, and wrote seminal books — including "The Society of Mind” and “The Emotion Machine” — that colleagues consider essential to understanding the challenges in creating machine intelligence.


You get a sense of his storied and varied career from his home page at MIT:

In 1951 he built the SNARC, the first neural network simulator. His other inventions include mechanical arms, hands and other robotic devices, the Confocal Scanning Microscope, the “Muse” synthesizer for musical variations (with E. Fredkin), and one of the first LOGO “turtles”. A member of the NAS, NAE and Argentine NAS, he has received the ACM Turing Award, the MIT Killian Award, the Japan Prize, the IJCAI Research Excellence Award, the Rank Prize and the Robert Wood Prize for Optoelectronics, and the Benjamin Franklin Medal.

One of his former students, Patrick Winston, now a professor at M.I.T., wrote a brief tribute to his friend and mentor:

Many years ago, when I was a student casting about for what I wanted to do, I wandered into one of Marvin's classes. Magic happened. I was awed and inspired. I left that class saying to myself, “I want to do what he does.”

M.I.T.'s obituary of Minsky explains some of the professor's critical insights into the challenge facing anyone trying to replicate or in some way match human intelligence within the constraints of a machine:
Minsky viewed the brain as a machine whose functioning can be studied and replicated in a computer — which would teach us, in turn, to better understand the human brain and higher-level mental functions: How might we endow machines with common sense — the knowledge humans acquire every day through experience? How, for example, do we teach a sophisticated computer that to drag an object on a string, you need to pull, not push — a concept easily mastered by a two-year-old child?
His field went through some hard times, but Minsky thrived. Although he was an inventor, his great contributions were theoretical insights into how the human mind operates.

In a letter nominating Minsky for an award, Prof. Winston described a core concept in Minsky's book "The Society of Mind": "[I]ntelligence emerges from the cooperative behavior of myriad little agents, no one of which is intelligent by itself." If a single word could encapsulate Minsky's professional career, Winston said in a phone interview Tuesday, it would be "multiplicities."

The word "intelligence," Minsky believed, was a "suitcase word," Winston said, because "you can stuff a lot of ideas into it.”

His colleagues knew Minsky as a man who was strikingly clever in conversation, with an ability to anticipate what others are thinking -- and then conjure up an even more intriguing variation on those thoughts.

Singularity Symposium

Who is Marvin Minsky?

Marvin Minsky is listed on Google Directory as one of the all time top six people in the field of artificial intelligence.

Isaac Asimov once described him as one of only two people he would admit were more intelligent than Asimov was (the other being Carl Sagan).

...Ray Kurzweil has referred to him as his mentor.

A philosopher and scientist, Marvin Lee Minsky was born in New York City on August 9, 1927, where he attended the Fieldston School and the Bronx High School of Science.
He served in the US Navy from 1944 to 1945 and received a BA from Harvard in 1950 and a PhD in mathematics from Princeton in 1954.

In 1959 Marvin Misky and John McCarthy founded what is now known as the MIT Computer Science and Artificial Intelligence Laboratory. He is currently the Toshiba Professor of Media Arts and Sciences, and Professor of electrical engineering and computer science.

Minsky was an adviser on the 1968 Stanley Kubrick classic science fiction movie 2001: A Space Odyssey and is referred to in both the movie and the book. He won the Turing Award in 1969, the Japan Prize in 1990, the IJCAI Award for Research Excellence in 1991, and the Benjamin Franklin Medal from the Franklin Institute in 2001.

Inventor and author, Minsky is universally regarded as one of the world's leading authorities in artificial intelligence who has made fundamental contributions to the fields of robotics and computer-aided learning technologies.

Some of his most notable books include The Society of Mind border=0 v:shapes="_x0000_i1025"> , Perceptrons v:shapes="_x0000_i1026"> (which he co-authored with Seymor Papert) and, most recently, The Emotion Machine.



Scientific American

The Many Minds of Marvin Minsky (R.I.P.)

The late Marvin Minsky, a pioneer of artificial intelligence, was a paradoxical figure, who once said Freud was his favorite theorist of mind.


By John Horgan on January 26, 2016
Marvin Minsky, a pioneer of artificial intelligence, died on Sunday, January 24, in Boston, according to The New York Times. He was 88. Minsky contributed two important articles to Scientific American: Artificial Intelligence, on his theories of multiple minds, and Will Robots Inherit The Earth?, on the future of AI. I profiled Minsky for Scientific American in 1993, after spending an afternoon with him at MIT’s Artificial Intelligence Laboratory, and again in The End of Science. Below is an edited version of the latter profile. -–John Horgan

Before I visited Marvin Minsky at MIT, colleagues warned me that he might be defensive, even hostile. If I did not want the interview cut short, I should not ask him too bluntly about the falling fortunes of artificial intelligence or of his own particular theories of the mind. A former associate pleaded with me not to take advantage of Minsky's penchant for outrageous utterances. "Ask him if he means it, and if he doesn't say it three times you shouldn't use it."

When I met Minsky, he was rather edgy, but the condition seemed congenital rather than acquired. He fidgeted ceaselessly, blinking, waggling his foot, pushing things about his desk. Unlike most scientific celebrities, he gave the impression of conceiving ideas and tropes from scratch rather than retrieving them whole from memory. He was often but not always incisive. "I'm rambling here," he muttered after a riff on verifying mind-models collapsed in a heap of sentence fragments.

Even his physical appearance had an improvisational air. His large, round head seemed entirely bald but was actually fringed by hairs as transparent as optical fibers. He wore a braided belt that supported, in addition to his pants, a belly pack and a tiny holster containing pliers with retractable jaws. With his paunch and vaguely Asian features, he resembled Buddha--Buddha reincarnated as a hyperactive hacker.


Minsky seemed unable--or unwilling--to inhabit any emotion for long. Early on, he lived up to his reputation as a curmudgeon and arch-reductionist. He expressed contempt for those who doubt computers can be conscious. Consciousness is a "trivial" issue, he said. "I've solved it, and I don't understand why people don't listen." Consciousness is merely a type of short-term memory, a "low-grade system for keeping records." In fact, computer programs such as LISP, which allow their processing steps to be retraced, are "extremely conscious," more so than we humans, with our pitifully shallow memory banks.

The only theorist of mind other than himself who truly grasped the mind's complexity was dead. "Freud has the best theories so far, next to mine, of what it takes to make a mind,” Minsky said.

Minsky derided Gerald Edelman's re-entrant-loops hypothesis as warmed-over feedback theory. Minsky even snubbed MIT's Artificial Intelligence Laboratory, which he had founded and where we happened to be meeting. "I don't consider this to be a serious research institution at the moment," he announced.

But as we wandered through the lab looking for a lecture on a chess-playing computer, a metamorphosis occurred. "Isn't the chess meeting supposed to be here?" Minsky asked a group of researchers chatting in a lounge. "That was yesterday," someone replied.
After asking about the chess talk, Minsky spun tales about the history of chess-playing programs. This mini-lecture evolved into a reminiscence of Minsky's late friend Isaac Asimov. Minsky said Asimov--who popularized the term "robot" and explored its metaphysical implications in his science fiction—declined to see robots at MIT, fearing that his imagination "would be weighed down by this boring realism."

One lounger, noticing that he and Minsky wore the same pliers, yanked his instrument from its holster and flicked its retractable jaws into place. "En garde," he said. Grinning, Minsky drew his pliers, and he and his challenger jabbed the tools at each other like punks in a knife fight.

Minsky expounded on the versatility and--an important point for him--drawbacks of the pliers; his pair pinched him during certain maneuvers. "Can you take it apart with itself?" someone asked. Everyone laughed at this allusion to a fundamental problem in robotics.

Returning to Minsky's office, we encountered a young, extremely pregnant Korean woman. She was a doctoral candidate scheduled for an oral exam the next day. "Are you nervous?" asked Minsky. "A little," she replied. "You shouldn't be," he said, and gently pressed his forehead against hers, as if seeking to infuse her with his strength.
I realized, watching this scene, that there are many Minskys.


But of course there would be. Multiplicity is central to Minsky's view of the mind. In his book The Society of Mind he contends that brains contain many different, highly specialized structures that evolved to solve different problems.

"We have many layers of networks of learning machines," he explained to me, "each of which has evolved to correct bugs or to adapt the other agencies to the problems of thinking." It is thus unlikely that the brain can be reduced to a particular set of principles or axioms, "because we're dealing with a real world instead of a mathematical one that is defined by axioms."

AI has not fulfilled its early promise because modern researchers have succumbed to "physics envy"--the desire to reduce the intricacies of the brain to simple formulae. "They are defining smaller and smaller subspecialties that they examine in more detail, but they're not open to doing things in a different way."

AI researchers have failed to heed Minsky’s message that the mind has many methods for coping with even a single, simple problem. For example, someone whose television set fails to work will probably first consider it to be a purely physical problem. He will check to see whether the television is properly programmed or whether the cord is plugged in. If that fails, the person may call a repairman, thus turning the problem from a physical one to a social one--how to find a repairman who can do the job quickly and cheaply.

"That's one lesson I can't get across” to AI researchers, Minsky said. "It seems to me that the problem the brain has more or less solved is how to organize different methods into working when the individual methods fail pretty often."

As Minsky continued speaking, his emphasis on multiplicity took on a metaphysical and even moral cast. He blamed the problems of his field--and of science in general--on what he called "the investment principle," which he defined as the tendency of humans to keep doing something that they have learned to do well rather than seeking new solutions.

Repetition, or, rather, single-mindedness, seemed to hold a kind of horror for Minsky. "If there's something you like very much," he asserted, "then you should regard this not as you feeling good but as a kind of brain cancer, because it means that some small part of your mind has figured out how to turn off all the other things."

Minsky has mastered many skills during his career--he is adept in mathematics, philosophy, physics, neuroscience, robotics and computer science and has even written several science-fiction novels—because he loves the "feeling of awkwardness" triggered by learning something hard. "It's so thrilling not to be able to do something. It's such a rare experience to treasure."

Minsky was a musical child prodigy until he decided that music is a soporific. "I think the reason people like music is to suppress thought--the wrong kinds of thought--not to produce it." Minsky occasionally composes "Bach-like things" on an electric piano in his office, but he tries to resist the impulse. "I had to kill the musician at some point," he said. "It comes back every now and then, and I hit it."

Minsky had no patience for those who claim the mind can never be fully understood. "Look, before Pasteur people said, 'Life is different. You can't explain it mechanically.' It's just the same thing." But a final theory of the mind, Minsky emphasized, will probably be extremely complex; after all, consider how long it would take to describe precisely all the components and workings of an automobile.

The truth of a final mind-model could be demonstrated in several ways. First, a machine based on the model's principles should be able to mimic human development. "The machine ought to be able to start as a baby and grow up by seeing movies and playing with things,” Minsky said. Moreover, as brain-imaging technology improves, scientists should be able to determine whether the neural processes in living humans corroborate the model.

"Once you get a [brain] scanner that has one angstrom resolution, then you could see every neuron in someone's brain. You watch this for 1,000 years and you say, Well, we know exactly what happens whenever this person says ‘blue.’ And people check this out for generations and the theory is sound. Nothing goes wrong, and that's the end of it."
If scientists achieve a final theory of mind, I asked, what frontiers will be left to explore?

"Why are you asking me this question?" Minsky growled. The concern that scientists will run out of things to do is "pitiful," he said. "There's plenty to do." We humans may well be approaching our limits as scientists, but we will soon create machines much smarter than us that can continue doing science.

But that would be machine science, not human science, I said.

"You're a racist, in other words," Minsky said, his great domed forehead purpling. I scanned his face for signs of irony, but found none. "I think the important thing for us is to grow," Minsky continued, "not to remain in our own present stupid state." We humans, he added, are just "dressed up chimpanzees." Our task is not to preserve present conditions but to evolve, and create beings smarter than us.    

When I asked what super-intelligent machines might be interested in, Minsky suggested, half-heartedly, that they might try to comprehend themselves as they kept evolving. He was more enthusiastic discussing the conversion of human psyches into digital avatars.

This technological advance would allow Minsky to indulge in dangerous pursuits, such as taking LSD or converting to a religious faith. "I regard religious experience as a very risky thing to do because it can destroy your brain in a rapid way. But if I had a backup copy..."

Minsky also wanted to know what Yo-Yo Ma, the great cellist, feels like when playing a concerto. But to my surprise, Minsky doubted whether such an experience is possible. To feel what Yo-Yo Ma feels as he plays, Minsky explained, he would have to possess all Yo-Yo Ma's memories. He would have to become Yo-Yo Ma.  But in becoming Yo-Yo Ma, Minsky would cease to be Minsky.

This was an extraordinary admission for Minsky to make, because it implied that the essence of each individual human might be irreducible and unknowable.

In spite of his reputation as a rabid reductionist, Minsky was an anti-reductionist. His revulsion toward single-mindedness, his fondness for Freud, his passion for learning and novelty--all these traits were those of a scientific romantic, for whom the quest mattered more than mere knowledge.

The views expressed are those of the author(s) and are not necessarily those of Scientific American.


New Technology

Marvin Minsky, the Man Who Built the First Artificial Brain, Dead at 88

​Minsky, an MIT professor, was the inventor of the first neural network, the first graphical headset, one of the first programmable robots, and so much more. 

Jan 26, 2016

Isaac Asimov, a scientist turned hard sci-fi writer, once remarked that the only people he ever felt overshadowed him in intelligence were Carl Sagan and Marvin Minsky. While the former is well known for his work popularizing astronomy, planetary science, and astrobiology, the other was a more obscure figure.

Minsky died on Sunday at age 88, suffering a cerebral hemorrhage. His work primarily involved artificial intelligence systems, writing some of the foundational texts of the discipline and building one of the first "artificial brains" in 1951.The Stochastic Neural-Analog Reinforcement Computer, or SNARC, was capable of machine learning at a time when most computers still ran on punchcards. He also created one of the first head-mounted graphical displays, a predecessor to today's inventions like the Oculus or Gear VR.

In 1954, he completed his dissertation at Princeton, writing "Neural Nets and the Brain Model Problem," tackling some of the machine learning theories to come. His work on neural nets continued even after they went out of fashion in computing, though they've seen a recent resurgence in popularity with the widespread availability of cloud computing. 

Minsky eventually made a home in 1958 at MIT as a math professor before founding the Artificial Intelligence Project and co-directing the Artificial Intelligence Lab from 1959 to 1974. He stayed at the university until recent years. He was the Toshiba Professor of Media Arts and Sciences from 1990 on.

A 1961 paper, "Steps Toward Artificial Intelligence," laid out the road map for machine learning, and is still considered one of the most important texts in artificial intelligence today. In books like Society of Mind, he delved into the inner workings of the human brain, and many of his writings tried to compare and contrast a human brain from the robotic brains to come, and even wrote a paper on how we might be able to make contact with alien civilizations some day in a productive fashion. 

Minsky skirted the line between theorist, inventor, and philosopher, working with delicate technological systems while staring firmly into the future of computing. Along with his early AI headseat and artificial brain, Minsky also invented scanning microscopes, synthesizers, robot arms, and early programmable toys. 
Source: MIT
.